# F& RTA-F

High Tensile Strength Synthetic Fiber Reinforcement for Asphalt Pavement

### VPRIS June 2018

Michael Jenkins – VPRIS Regional Sales Manager 413.230.7931 - Mobile



A-PS-SA8.22.16

### What FORTA-FI® Can Do











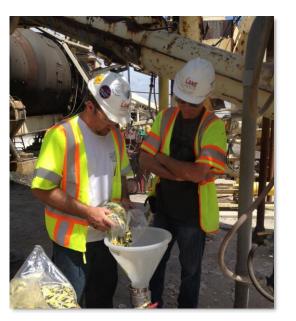
### **Drum & Batch Plant**



#### EASY TO USE

- easily metered automatically or manually
- mixes in drum plants and batch plants
- mixes thoroughly in seconds
- distributes uniformly

#### **NO MODIFICATIONS needed to:**


- · your current asphalt mixture
- asphalt plant
- placement or compaction practices

#### TESTED AND PROVEN

Extensively tested with proven results!

## How to add fiber!





#### FORTA® Voyager Advantages

- EXCEPTIONAL ACCURACY: Reduce the opportunity for mistakes! Waste less fiber with the Voyager fiber dispenser.
- EASY TO USE: Simply add the fiber to the unit and step away.
- IMPROVES INVENTORY TRACKING: Easy-to-read displays allow for simple fiber tracking that updates in real time.
- DISPENSES MOST TYPES OF FIBER: The Voyager Fiber Dispenser is compatible with a variety of fibers.
- IMPROVES EMPLOYEE SAFETY: No need for workers to climb up stairs to introduce fiber into the mix.
- CAN REDUCE WORKER COMPENSATION COSTS: With improved safety - save money with fewer job related injuries!
- REDUCES LABOR COSTS: Less workers needed for a job.



### Dispersion...

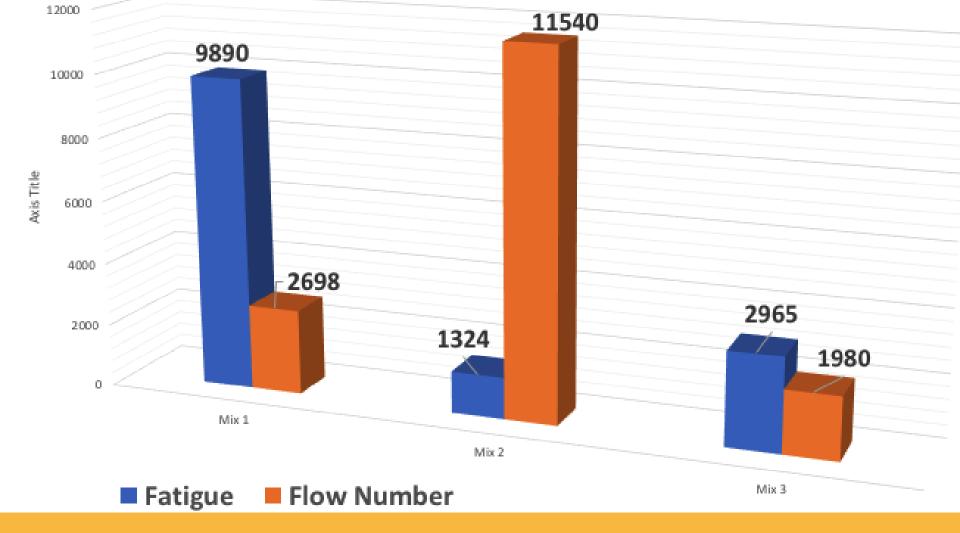


| State                                    |                                                                                                                                                     | E                              | Example ARIZON,<br>UNIVE |            |                      |   |  |  |  |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|------------|----------------------|---|--|--|--|--|--|
| Bundle<br>(Least<br>Desired)             | A group of many<br>indication of distu<br>aramid fibers.                                                                                            | of                             | -                        |            |                      |   |  |  |  |  |  |
| Agitated<br>Bundle<br>(Least<br>Desired) | A grouping of aramid fibers similar to the bundled condition, but that that has been visually agitated and has lost some of the individual aramids. |                                |                          |            |                      |   |  |  |  |  |  |
| Cluster<br>(Less<br>Desired)             | A grouping of individual aramid fibers that are more dispersed than the agitated bundle.                                                            |                                |                          |            |                      |   |  |  |  |  |  |
|                                          | •                                                                                                                                                   | Equivalent                     | e of Aram                | Aramid (%) |                      |   |  |  |  |  |  |
| Spec                                     | cimen ID                                                                                                                                            | Aramid Dosage<br>Rate (oz/ton) | Agitated<br>Bundle       | Cluster    | ADSR<br>(Individual) | ) |  |  |  |  |  |
| FOR                                      | TA-FI 1                                                                                                                                             | 2.2                            | 2                        | 8          | 90                   |   |  |  |  |  |  |
| FOR                                      | TA-FI 2                                                                                                                                             | 2.2                            | 0                        | 13         | 87                   |   |  |  |  |  |  |

### "The smallest calculated LCCA is 20%..."

- The cost of fiber-reinforced mixture per 1000 cycles of fatigue life per mile was \$288, whereas for the unmodified mixture it was \$543.
- The cost of fiber-reinforced modified mixture per cycles of rutting life per mile was \$1712, while the unmodified mixture was \$6567.

Mechanistic Analysis and Economic Benefits of Fiber-Reinforced Asphalt Mixtures – pg. 20 Tripathi, A., and Souliman, M. Submitted for the Presentation and Publication at the 2018 Annual Meeting of the Transportation Research Board

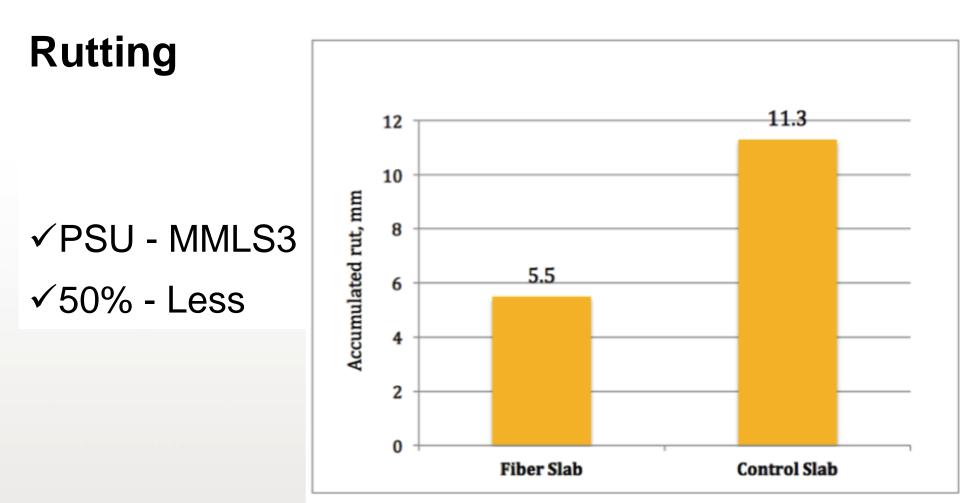

# Asphalt is made up of:

TA-F

Rock, Sand, & Aggregates Asphalt Cement (the binder)

O CHANGE

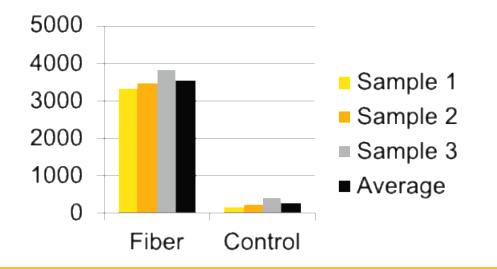
Mix Design &



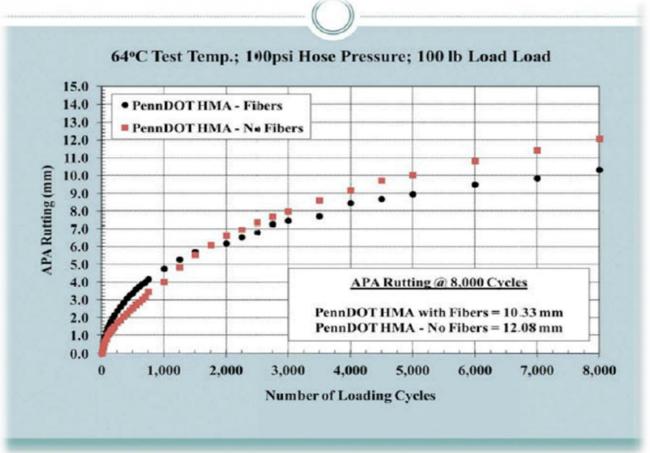










### **Rutting Evaluation**

#### Flow Number:

- Measures Permanent Deformation
- Fiber had 11.6x higher flow number than the control



### **Rutting – Top Layer**







AutoBahn

\* 10X Better Raveling Test

Jackson Hole

\* 9 years, was 6-8

#### JACKSON HOLE AIRPORT- JACKSON, WY

AIRPORT

#### NCAT

of the SMA mix that tends to ravel quick

\* 20M ESALs, No Raveling ASU PCI Study

\* Reduced Raveling 100%

#### CHALLENGE:

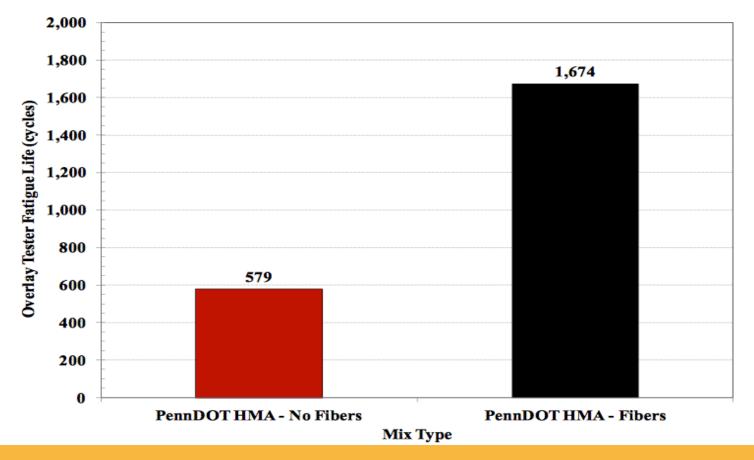
Raveling caused by airplane traffic leading to loose aggregates damaging jet engines

SOLUTION: Replace runway and add FORTA-FI® into the mix to prevent raveling

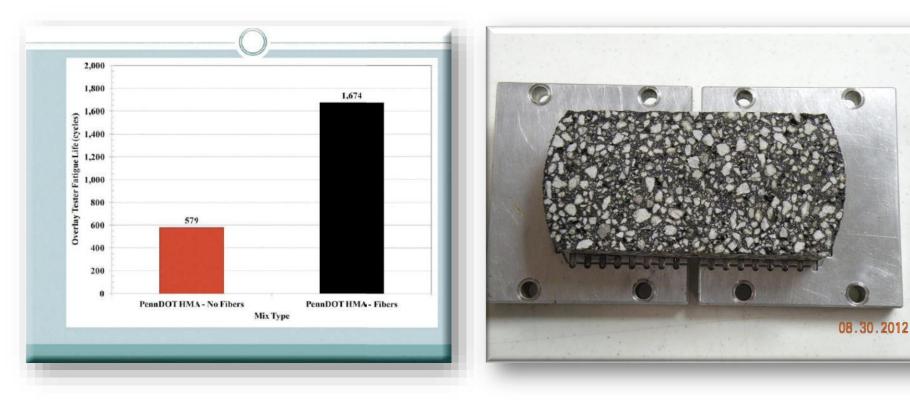


### **Reduce Raveling**

#### Table 1. Comparison between original calculated and verified PCIs


| Branch  | Section | Description  | Severity | Quantity | Units | Density | Original |      | Verified |       |  |
|---------|---------|--------------|----------|----------|-------|---------|----------|------|----------|-------|--|
|         | Section | Description  | Severity | Quantity | Cints | Density | DVs      | PCI  | DVs      | PCI   |  |
|         |         | Alligator CR | Low      | 18.50    | SqFt  | 0.28    | 4.78     | 4.78 |          |       |  |
|         | 1       | L&T CR       | Low      | 80.00    | Ft    | 1.19    | 2.59     | 95   | 2.24     | 93.46 |  |
|         |         | Patch/cut    | Low      | 3.00     | SqFt  | 0.04    | 0.00     |      | 0.00     |       |  |
| SD 2026 |         | Alligator CR | Low      | 120.75   | SqFt  | 1.80    | 15.64    |      | 15.30    | 69.08 |  |
| SR 3036 |         | Alligator CR | Medium   | 18.00    | SqFt  | 0.27    | 10.81    |      | 11.10    |       |  |
|         | 2       | L&T CR       | Low      | 73.00    | Ft    | 1.09    | 2.28     | 72   | 1.97     |       |  |
|         |         | L&T CR       | Medium   | 40.50    | Ft    | 0.60    | 5.32     |      | 5.55     |       |  |
|         |         | Raveling     | Medium   | 746.00   | SqFt  | 11.12   | 19.32    |      | 18.90    |       |  |




### **Reduce Cracking**



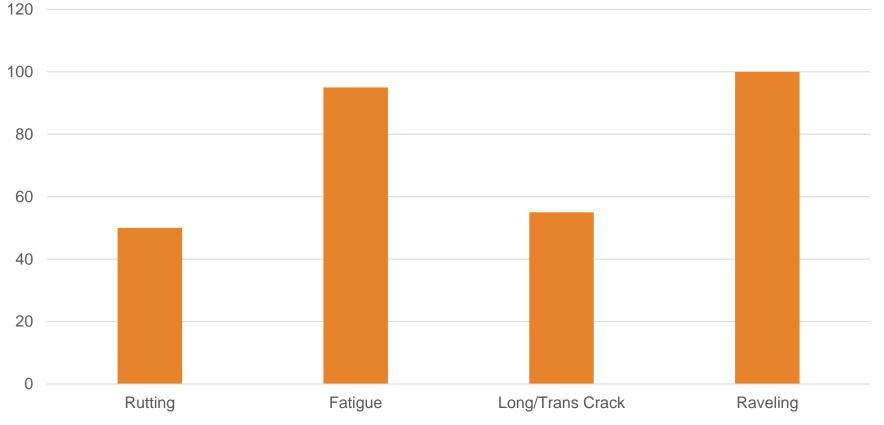
### **Crack Testing**



### **Texas Overlay Tester Plates**



### **Reduce Cracking**




#### GLEN DAVID DRIVE- O'HARA TOWNSHIP, PA



ROADWAY

#### % **IMPROVEMENT**

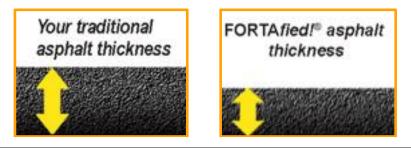




R

F

| 1<br>H           | THE PERIODIC TABLE OF ELEMENTS |          |                     |                     |                 |                      |                            |                       |                            |          |                     |                     |                            |                 | He                  |                     |                            |
|------------------|--------------------------------|----------|---------------------|---------------------|-----------------|----------------------|----------------------------|-----------------------|----------------------------|----------|---------------------|---------------------|----------------------------|-----------------|---------------------|---------------------|----------------------------|
| ³<br>Li          | Be                             |          |                     |                     |                 | ĉ                    | Ň                          | ů                     | ,<br>F                     | Ne       |                     |                     |                            |                 |                     |                     |                            |
| "<br>la          | Mg                             |          |                     |                     |                 |                      |                            |                       |                            |          |                     |                     |                            | 15<br><b>P</b>  | 16<br>S             | <sup>17</sup><br>Cl | <sup>18</sup><br><b>Ar</b> |
| 19<br>K          | <sup>20</sup><br>Ca            | 21<br>Sc | 22<br><b>Ti</b>     | 23<br>V             | 24<br><b>Cr</b> | 25<br>Mn             | Fe <sup>26</sup>           | 27<br>Co              | 28<br>Ni                   | 29<br>Cu | 30<br>Zn            | Ga <sup>31</sup>    | Ge                         | 33<br>As        | <sup>34</sup><br>Se | 35<br><b>Br</b>     | <sup>36</sup><br>Kr        |
| 37<br><b>?b</b>  | 38<br>Sr                       | 39<br>Y  | <sup>₄₀</sup><br>Zr | Nb <sup>41</sup>    | 42<br>Mo        | 43<br><b>Tc</b>      | Ru 44                      | <sup>45</sup><br>Rh   | <sup>46</sup><br><b>Pd</b> | Å7<br>Åg | <sup>48</sup><br>Cd | 49<br>In            | 50<br><b>Sn</b>            | 51<br><b>Sb</b> | 52<br><b>Te</b>     | 53<br>              | 54<br>Xe                   |
| 55<br>S          | Ba                             | 57-71    | <sup>72</sup><br>Hf | <sup>73</sup><br>Ta | 74<br>W         | <sup>75</sup><br>Re  | <sup>76</sup><br><b>Os</b> | "<br>Ir               | 78<br>Pt                   | 79<br>Au | ₿0<br>Hg            | 81<br><b>TI</b>     | <sup>82</sup><br><b>Pb</b> | 83<br>Bi        | <sup>84</sup><br>Ро | At 85               | <sup>86</sup><br>Rn        |
| 87<br>F <b>r</b> | <sup>88</sup><br>Ra            | 89-103   | 104<br><b>Rf</b>    | 105<br><b>Db</b>    | 106<br>Sg       | <sup>107</sup><br>Bh | <sup>108</sup><br>Hs       | 109<br>Mt             | 110<br>Ds                  | ™<br>Rg  | 112<br><b>Cn</b>    | 113<br>Uut          | 114<br>Uuq                 | 115<br>Uup      | 116<br>Uuh          | 117<br>Uus          | 118<br>Uuo                 |
|                  |                                |          |                     |                     |                 |                      |                            |                       |                            |          |                     |                     |                            |                 |                     |                     |                            |
|                  |                                |          | 57<br>La            | 58<br>Ce            | 59<br><b>Pr</b> | <sup>60</sup><br>Nd  | Pm                         | 5 <sup>62</sup><br>Sm | <sup>63</sup><br>Еи        | 64<br>Gd | <sup>65</sup><br>Tb | <sup>66</sup><br>Dу | Ho                         | 68<br>Er        | <sup>69</sup><br>Tm | 70<br><b>Yb</b>     | 71<br>Lu                   |
|                  |                                |          | 89<br>Ac            | 90<br>Th            | 91<br>Pa        | 92<br>U              | 93<br>Np                   | 94<br><b>Pu</b>       | 95<br>Am                   | 96<br>Cm | 97<br><b>Bk</b>     | 98<br>Cf            | 99<br>Es                   | 100<br>Fm       | 101<br>MD           | 102<br>No           | 103<br>Lr                  |




### Thinning to compete against concrete

### **Save Now**

Use 35% Less Asphalt Thickness

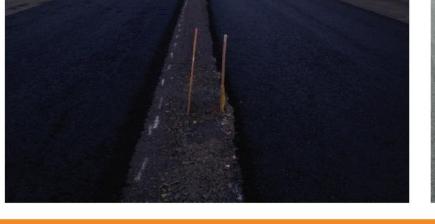
Stronger than your traditional asphalt mixture



### **Save Down the Road**

Lasts 50% Longer

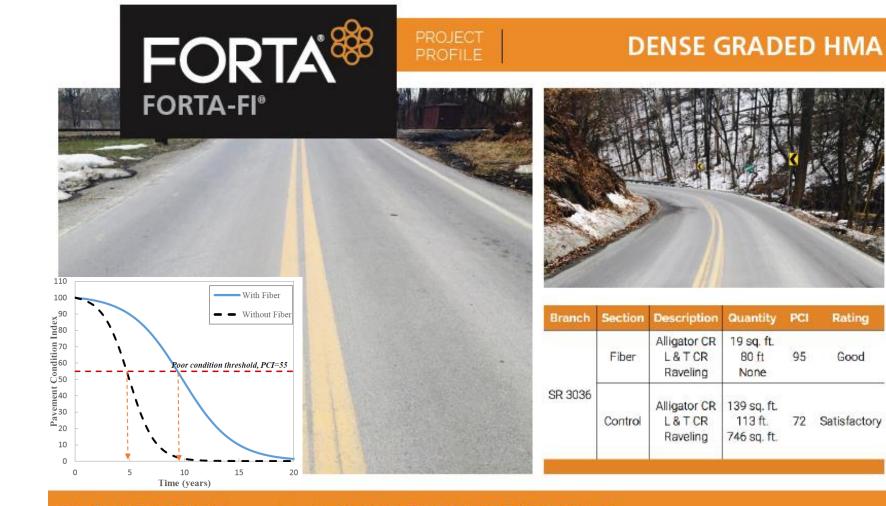
Reduce cracking and rutting








#### DENSE GRADED HMA



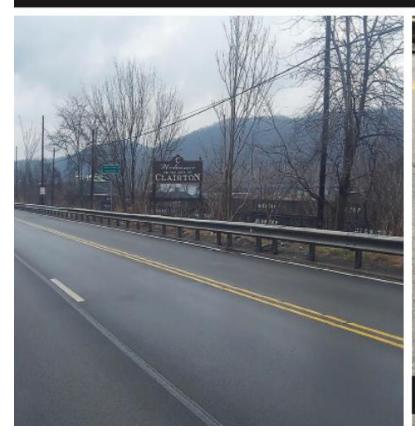



#### STATE ROUTE 2020 - PHILADELPHIA, PA

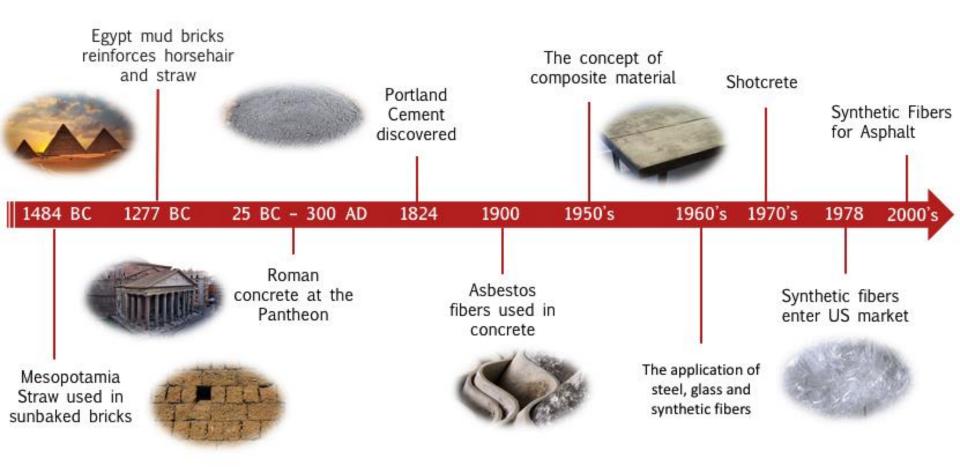


#### JACKSON HOLE AIRPORT - JACKSON HOLE, WY




Rating

Good


STATE ROUTE 3036 - LANCASTER COUNTY, PA

#### STATE ROUTE 837 - CLAIRTON, PA









### Where in the world is FORTA-FI®?

## Thank You www.forta-fi.com